
On the integrability of Bianchi cosmological models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 2031

(http://iopscience.iop.org/0305-4470/31/8/014)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 2031–2043. Printed in the UK PII: S0305-4470(98)85407-3

On the integrability of Bianchi cosmological models

Andrzej J Maciejewski†§ and Marek Szyd lowski‡‖
† Institute of Astronomy, Nicolaus Copernicus University, 87-100 Toruń, Chopina 12/18, Poland
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Abstract. In this paper, we investigate the problem of the integrability of Bianchi class A
cosmological models. This class of systems is reduced to the form of Hamiltonian systems with
exponential potential forms.

The dynamics of Bianchi class A models is investigated through the Euler–Lagrange
equations and geodesic equations in the Jacobi metric. On this basis, we have come to some
general conclusions concerning the evolution of the volume of 3-space of constant time. The
general form of this function has been found. It can serve as a controller during numerical
calculations of the dynamics of cosmological models. The integrability of cosmological models
is also discussed from the points of view of different integrability criteria. We show that the
dimension of the phase space of Bianchi class A Hamiltonian systems can be reduced by two.
We prove that the vector field of the reduced system is polynomial and that it does not admit
any analytic, or even formal first integral.

1. Introduction

We shall investigate the dynamics of the most interesting group of homogeneous Bianchi
class A cosmological models described by the natural Lagrangian function

L = 1
2gαβq̇

αq̇β − V (q) = T − V (q)

= 1

4

3∑
i=1,i<j

d lnqi

dt

d lnqj

dt
− 1

4

(
2

3∑
i=1,i<j

ninjq
iqj −

3∑
i=1

n2
i q

2
i

)
(1)

where qi ≈ A2
i (i = 1, 2, 3) are three squared scale factorsAi for diagonal class A

Bianchi models; different Bianchi types correspond to different choices ofni ∈ {−1, 0, 1},
i = 1, 2, 3; a dot denotes differentiation with respect to the cosmological timet . The
logarithmic timeτ is related to cosmological timet by

dτ = dt

(q1q2q3)1/2
= dt

VolM3
.

Bogoyavlensky [1] proved an important property of the system (1), namely, the existence
of the monotonic functionF of the following form:

F = d

dt
(q1q2q3)1/6 = d

dt
(VolM3)1/3 (2)
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such that
dF

dt
6 0.

The function (2) is invariant with respect to the scaling transformations and it has the sense
of the speed of change of the average radius of the universe. The function|F | along any
solution decreases from infinity to zero in such a way thatF = 0 is reached at the moment
of maximal expansion, and|F | = ∞ corresponds to the initial singularity. The existence
of the functionF allows us to define what we call the early stage of the evolution of the
universe as

F � 1.

The importance of this function for numerical integration of B(IX) models has been pointed
out in [2]. The authors used the Rauchaudhuri equations to show the property of upper-
convexity of the function(VolM3)(t) which means that this function does not possess a
local minimum (whereF = 0 andḞ > 0), and may possess not more than one maximum.
If F < 0, the volume(VolM3)(t) shrinks; whereas ifF > 0 it expands. Both processes
take place in the same region of the phase space(p, q) but with reverse directions of time.
In the phase space(p, q) the functionF has the following form:

F = (q1q2q3)1/6

3
piq

i pi = ∂L

∂q̇i

and

dF

dt
= (q1q2q3)1/6

9

[
(piq

i)2− 6V
]

where thepi are the momenta conjugated with the generalized coordinatesqi . In [2], the
functionF was used to control the quality of numerical integrations of the B(IX) model. In
this model, the scale factors oscillate in a neighbourhood of the initial and final singularities.
The function(VolM3)(t), obviously, does not possess the analogous property [2, 3].

Let us note the recent important results of Cushman andŚniatycki [4] concerning the
functionF and chaos in the B(IX) system. They proved that the existence of a monotonic
function F excludes the possibility of recurrence in the system and, thus, any form of
standard deterministic chaos in the system. This illuminates previous negative results and
shows that for a study of this system we have to use non-conventional methods.

Several authors tested whether the last model passes the standard Painlevé integrability
test (in the form of the ARS algorithm [5]). The first results of Contopouloset al [6]
showed that the B(IX) model passes this test. Next, this paper was revised [7], however,
without any strict conclusions concerning integrability. It was also stated that this model
passes Ziglin’s test (see [11, 10, 9]). More careful Painlevé analysis was done by Latifi
et al in [12]. They showed that the B(IX) model does not pass the so-called perturbative
Painlev́e test. The authors of this paper suggest the existence of ‘some chaotic regimes’
in the system. The strongest result in this direction was obtained in [8] where the authors
showed the existence of movable critical essential singularities in the B(IX) model.

The above remarks show that the notion of ‘chaos’ has an unclear status when dynamical
systems arising from general relativity and cosmology are studied. Moreover, for the B(IX)
model a discrete dynamics defined in [13] that approximates the exact continuous model
shows strong ergodic properties; however, this ‘chaotic behaviour’ seems to be absent
(or hidden) in the continuous dynamics. Moreover, the standard criteria for the detection
of chaos (Lyapunov characteristic exponents, LCE) are not invariant with respect to the
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time reparametrization and transformation of phase variables, whereas the existence of first
integrals is an invariant property of the system. It is also important to note that the non-zero
LCE can be used as an indicator of chaos only when the motion takes place in a compact
invariant subset of the phase space, but this is not true for the B(IX) dynamical system.
All these facts formed the motivation for us to study the problem of integrability of the
models investigated here. The non-integrability of the system is a weaker property than
chaos (in the sense of deterministic chaos) but is better described and understood. The
authors believe that investigations of non-integrability in the B(IX) models can contribute
to a better understanding of chaos in cosmological models.

Here we show that the Bianchi class A Hamiltonian systems are not completely
integrable in the Birkhoff sense. This conclusion is weak as the negative answer to the
question about algebraic complete integrability of B(IX) (see [14]). In order to obtain a
stronger result we reduce the dimension of the phase space by two. We show that the
reduced system is polynomial and, most importantly, it does not admit any analytical, or
even formal, first integral.

In cosmological models chaos, if properly defined and present, has some hidden
character. The basic indicator of chaos in these models, the LCE, depends on the
choice of the time parametrization. In the logarithmic timeτ , nearby trajectories diverge
linearly whereas in other time parametrizations they will diverge exponentially, which is
characteristic for chaotic systems. The fact that the rates of separation of nearby trajectories
depend on the clock used is obvious. The problem lies in the invariant choices of the time
parameter for invariant chaos detection. Such a role is played by the Maupertuis clock (the
time parameters is such that ds/dτ = 2|E−V |, whereE is the total energy of the system,
V is its potential andτ is the mechanical time).

Our point of view is such that the LCE, when used in general relativity, should be defined
in an invariant way. Then the results could be interpreted in different time parametrizations.
The Bianchi IX model is ‘chaotic’ in the parameters (the LCE is positive), but, after
transition to the parameterτ , nearby trajectories diverge linearly in the same way as in
integrable systems. This phenomenon is called ‘hidden chaos’. Let us note that the
existence of the first integral of an autonomous system is an invariant property (with respect
to time reparametrization and to transformation of phase variables). In general relativity
and cosmology, the problem of non-integrability or chaos is not only very subtle but also is
strictly connected with the invariant description. One must be very careful in trying to detect
integrability in the B(IX) dynamics. The question as to whether chaos in the gauge theory is
a physical phenomenon is, generally, an open problem. Recently, a fractal approach seems
to give the definite answer to the problem of the existence of chaos in this class of systems.
Cornish and Levin [15] demonstrated that the mixmaster universe is indeed chaotic by using
coordinate-independent, fractal methods. Unfortunately, they used an approximation of the
true dynamics.

2. The dynamics of Bianchi class A models from the Euler–Lagrange equations

The Hamiltonian function for the system (1) has the following form:

H = 1
2g

αβpαpβ + V (q) (3)

where

pα = gαβq̇β
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gαβ = 2
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HereV (q) is the potential function. The obtained Hamiltonian system is considered only
on an invariant set of the phase space defined by the zero level of the Hamiltonian (3), i.e.

H = 0. (4)

The Euler–Lagrange equations in timeτ have the following form:

d2qα

dτ 2
+ 0αβγ

dqβ

dτ

dqγ

dτ
= gαβ ∂V

∂qβ
(5)

where the Christoffel symbols0αβγ are connected with the metric defined by the kinetic
energy

T = 1
2gαβq̇

αq̇β = 1
2g

αβpαpβ.

After being transformed to a new time parameters, called the Maupertuis time, equations (5)
take the form of geodesic equations for the Jacobi metric

ĝαβ = 2|E − V |gαβ = 2Wgαβ

i.e.

d2qα

ds2
+ 0̂αβγ

dqβ

ds

dqγ

ds
= 0 (6)

where a hat denotes that the quantities are calculated with respect to the Jacobi metric. The
Christoffel symbols calculated fromg and ĝ metrics are connected by the relations

0̂ijk = 0ijk + Aijk (7)

where

Aijk = (∂j8)δik + (∂k8)δij − gir (∂r8)gjk
8 = 1

2 ln 2W.

Let us note that the kinetic energy form does not depend on the Bianchi type models
characterized by the set{n1, n2, n3}. The only non-vanishing Christoffel symbols are

01
11 = −

1

q1
02

22 = −
1

q2
03

33 = −
1

q3
. (8)

After substitution of (8), the system (5) takes the form

1

qi

d2qi

dτ 2
−
(

d

dτ
ln qi

)2

= (nj )2(qj )2+ (nk)2(qk)2− (ni)2(qi)2− 2njnkq
jqk (9)

where{i, j, k} ∈ S3, andS3 denotes the set of even permutations of{1, 2, 3}.
The change of variables

qi = eQ
i

i = 1, 2, 3 (10)

transforms the above equations to the following form:

d2Qi

dτ 2
= (nj )2e2Qj + (nk)2e2Qk − (ni)2e2Qi − 2njnke

Qj+Qk

(11)
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where{i, j, k} ∈ S3.
After introducing the new variablesQi and using the definition (10), the Lagrange

system (1) can be transformed to a Hamiltonian one. The Hamilton function for this system
takes the following form:

H(p,Q) = 2
3∑
i<j

pipj −
3∑
i=j

p2
i +

1

4

(
2

3∑
i<j

ninje
Qi+Qj −

3∑
i=j

n2
i e

2Qi

)
= 1

2g
αβpαpβ + V (Qα) (12)

wherepi = 1
4(Q̇

j + Q̇k) for {i, j, k} ∈ S3. The Hamilton function (12) is a special case of
the Hamiltonian for the so-called perturbed Toda lattice [16].

The system (11) is satisfied on the Hamiltonian constraintH = 0 which is equivalent
to the condition of normalization of the tangent vector to the trajectoryui = dqi/ds, i.e.

‖u‖2 = 2Wgαβ
dqα

ds

dqβ

ds
= − sgnV (13)

or

gαβ
dqα

dτ

dqβ

dτ
= 2V sgnV.

In terms of the variablesQi , the constraint condition is equivalent to
3∑
i<j

dQi

dτ

dQj

dτ
= −8V. (14)

Summing both sides of equations (11), we obtain the following formula:
3∑
i=1

d2Qi

dτ 2
= −4V. (15)

Equations (11), after time reparametrizationτ → s = s(τ ), take the form of geodesic
equations. From equations (11) we obtain

4W 2 d2Qi

ds2
+ dQi

ds

∂W

∂Qj

dQj

ds
= (nj )2e2Qj + (nk)2e2Qk − (ni)2e2Qi − 2njnke

Qj+Qk

where{i, j, k} ∈ S3. The problem of the investigation of Lagrange systems with indefinite
kinetic energy form is an open one. The first steps in investigating such systems were
taken in [17]. In the terminology of [17] our system is a special case, the so-called
non-classical simple mechanical system. As was established there, these systems have
the following fundamental property. A trajectory of the system can pass through the set
∂D = {q : E − V = 0}. During this passage the vector tangent to trajectory changes the
cone sector defined by the kinetic energy form:gαβ(q0)ξ

αξβ = 0 whereξα = dqα/ds,
q0 ∈ ∂D. In our case the signature ofgαβ is Lorentzian, i.e.(−,+, . . . ,+) (for details
see [17]).

In generic situations (ni 6= 0 for i = 1, 2, 3) which include the B(VIII) and B(IX) models
(mixmaster models), there are analytical and numerical arguments that the function of sign
of the potential for a typical trajectory is an infinite sub-sequence which is a one-sided cut
of the following double infinite sequence (see [18]):

sgnV = {. . . ,+1, 0,−1, 0,−1, . . .}. (16)

If we assume that the sub-sequence (16) is finite, then our system reaches the stateV = 0
(W = 0 in the general case) which corresponds to the Kasner solutions, a finite number of
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times. During the Kasner epoch the information about the localization of the point on the
interval of normal separation (modulo initial localization) growse times [16]. If the sub-
sequence (16) is finite it means that aftern̄ epochsn̄ bytes (i.e. a finite number of bytes) of
information have been lost, whereas we know that our system is chaotic (the loss of infinite
information is required for chaos). Let us note that when the system goes asymptotically
to the boundary setsW = 0 then it is asymptotically free.

3. Properties of the volume function of the constant time 3-space

Equation (15) implies that

1

2

d2

dτ 2
ln(VolM3) = −2V = 2T . (17)

The above relation means that, in a generic case(∀ i ni 6= 0), there is an infinite number
of intervals in which the function ln(VolM3) is subsequently convex up and down. These
intervals are separated by an infinite number of inflexion points (which correspond toV = 0)
in the diagrams of the function ln(VolM3)(τ ) and lie on the lines ln(VolM3)(τ ) = ±τ +C.
The additional information we have about the B(IX) model is that this model has initial and
final singularities. In the following paragraphs we shall concentrate on the B(IX) models.
From the(0, 0) components of the Einstein equation for the B(IX) case, we obtain the result
that the function ln(VolM3)(τ ) cannot possess a local minimum, but it can possess a single
maximum.

After integration of both sides of (15) overτ and assuming that in the moment of
maximal expansionτ = τ0 we obtain

ln(VolM3)(τ ) ∝ eC1τ exp

(∫ τ

τ0

s(t) sgn(−V ) dt

)
(18)

where we chooseC1 = 1 in the expansion phase andC1 = −1 in the contraction phase
of the volume function (ifV = 0, ln(VolM3)(τ ) ∝ e±τ ). Finally, for any model which
describes the evolution of the volume function

ln(VolM3)(τ ) ∝ eτ(1+〈s〉)
τ→∞−→ eτe〈s〉 ∝ eτ (19)

where

〈s〉 = 1

τ

∫ τ

τ0

s(t) sgn(−V ) dt

in which we assume that the average value ofs(τ ) on the interval(τ, τ0) exists asτ →−∞,
and is finite. Equation (19) immediately yields the result that in a neighbourhood of the
initial singularity (τ → −∞) the volume function changes exactly as in Kasner’s models.
The second observation is as follows. the volume function does not oscillate around the
equilibrium positions ln(VolM3)(τ ) ≡ 0 but oscillates around Kasner’s solution. In other
words, Kasner’s solution plays a role analogous to that of the equilibrium positions in the
small-oscillation approximation. From equation (18) one can obtain the following relations
between a natural parameters defined along the geodesics (Maupertuis time) and the volume
function ln(VolM3)(τ ):

s = d

dt
ln(VolM3)(τ ) for V < 0

s = − d

dt
ln(VolM3)(τ ) for V > 0.
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The zero value of the parameters corresponds to the momentτ = τ0. The relations between
the parameters, the functionF and the scalar expansion function

2 ≡ d

dt
ln(VolM3)(t)

are as follows:

s(τ ) = ±6[(VolM3)(τ )]1/3F(τ)

s(τ ) = ±[(VolM3)(τ )]2(t(τ ))

where the plus and minus signs correspond toV < 0 andV > 0, respectively. From the
above, we can conclude that ‘near the singularity’ is equivalent tos � (VolM3)1/3, i.e.
s � 0. Equation (19) implies that the characteristic time after which(VolM3)(τ ) grows
e-times, i.e.(VolM3)(τ ) ∝ eτ/τchar has the following form:

τchar= (1+ 〈s〉)−1. (20)

This characteristic time is finite if the average〈s〉 exists.

4. Analysis of the integrability of the B(IX) model

There are several definitions of integrability. Generally, integrability means that the system
under consideration possesses a sufficiently large number of first integrals. To be more
precise, a Hamiltonian system withn degrees of freedom is integrable if it possessesn

functionaly independent first integrals which are in involution (or which form a solvable
Lie algebra). It is necessary to specify the class of functions that contains these first integrals
as well as to define the domain of their definition. Let us note here that there are examples
of Hamiltonian systems that possess a first integral of classCα but do not possess an integral
of classCβ with β > α, for α, β = 1, 2, . . . ,∞, ω (see [19]).

It is also well known that every system ofn differential autonomous equations is locally
integrable—in a neighbourhood of every non-singular point (where the right-hand sides do
not vanish) it possessesn − 1 first integrals. Thus, non-trivial problems are non-local or
concern the existence of integrals in a neighbourhood of equilibrium points. It is very
difficult to prove the integrability or otherwise of a given set of differential equations. One
way to simplify the problem is to restrict the class of functions where we look for integrals.

As an illustration of this approach, let us consider the Birkhoff integrability (see [20])
of the Bianchi class A system in the form (12). This system belongs to the wide class of
Hamiltonian systems inR2n equipped with the standard symplectic structure and is given
by the following Hamiltonian function:

H = 1

2
(p, p)+

∑
m∈M

vm exp〈cm, q〉 (21)

where

(p, p) =
n∑

i,j=1

aijpipj 〈cm, q〉 =
n∑
i=1

cmi q
i m = (m1, . . . , mn) ∈ Zn

(aij ), vm andcm are constant;M is a finite subset ofZn:
M = {m ∈ Zn | vm 6= 0}.

We look for integrals that are polynomials with respect top, i.e.

f (q, p) =
∑
k∈Nl

fkp
k
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where

Nl = {m ∈ Zn+ | |m| 6 l} |m| =
n∑
i=1

mi pm = pm1
1 . . . pmnn m ∈ Zn+

and the coefficientsfk have the form of infinite series of exponents:

fk =
∑
m∈Zn

f (k)m exp(c(k)m , q).

HereZ+ denotes non-negative integers. We say that the system (21) is Birkhoff integrable if
it possessesn independent integrals of the prescribed form (see the note by Ziglin [21] about
modification of the original definition of Kozlov). We order the elements ofM according
to lexicographic order and denote its maximal element byα and the maximal element of
M that is not colinear withα by β. Then, according to [22, theorem 3] if

k(α, α)+ (α, β) 6= 0 for all k ∈ Z+ (22)

then the Hamiltonian system (21) is not integrable in the Birkhoff sense. We immediately
have the following theorem.

Theorem 1.A generic case of the Bianchi class A system given by the Hamiltonian function
(12) with ni 6= 0 for i = 1, 2, 3 is not integrable in the Birkhoff sense.

Proof. For the Hamiltonian (12) we have

M = {(1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1)}
and thusα = (1, 1, 0) andβ = (1, 0, 1). The metric(aij ) has the form

(aij ) = 2

 −1 1 1

1 −1 1

1 1 −1


and thus we have

k(α, α)+ (α, β) = 4 6= 0

and this completes the proof. �
Let us remark that in the case where one of theni is equal to zero thenk(α, α)+(α, β) =

0 for all k. In such a case the system has one additional integral, namelypi .

5. Reduction and non-integrability of the B(IX) model

The results obtained in section 4 are weak. There are two reasons for this. First, we asked
about thecompleteintegrability of the system. However, the system under investigation
can only haveone additional integral. The most important reason is the fact that we
have formulated our question for the system defined on the whole ofR6, although we are
interested only in the system on a five-dimensional manifold defined by the levelH = 0.
One can imagine a system that is not globally integrable although it possesses a single first
integral on one prescribed energy surface. In fact, we can restrict our system to an energy
surface, e.g.,H = 0, because it is invariant with respect to the flow generated byH. Such
a reduced system does not possess ana priori known first integral. However, let us assume
that such integralF exits or can be found. Then, if it is defined on the whole phase space
we can ask about invariant properties of surfaces of its constant valueF = constant. It
turns out that such surfaces are in generalnot invariant with respect to the flow generated
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by H; however, their parts which intersect the surfaceH = 0 are invariant. An example of
a system with such an integral is a heavy top in the Goryatshev–Tshaplygin case when an
additional integral exists only on the zero level of the area first integral [10].

In this section, we want to study the B(IX) Hamiltonian system only on the levelH = 0.
When investigating a dynamical system we usually try to lower its dimension by making

use of its first integrals and symmetries. For the Hamiltonian system (3), we know only
one first integral, the Hamiltonian. Thus, using it, we can potentially reduce the dimension
of the system by one; however, we lose the polynomial form of the system, and, moreover,
the reduced Hamiltonian system thus obtained is not autonomous. We do not want this side
effect of reduction, because it excludes the possibility of applying algebraic tools for the
study of non-integrability.

In this section, we show how to reduce the dimension of the phase space by two and
preserve the polynomial form of the vector field under consideration. We can achieve
this although we lose the canonical Hamiltonian form of the system. In what follows, we
consider the case of B(IX) (n1 = n2 = n3 = 1). First, we transform the Hamiltonian vector
field corresponding to the Hamiltonian (3) to a homogeneous polynomial form of second
degree. To this end let us set

yi = qi zi = q̇i

qi
i = 1, 2, 3 (23)

then the equation of motion will have the form

ẏi = yizi żi = (yj − yk)2− y2
i {i, j, k} ∈ S3. (24)

This system has a first integral corresponding to the Hamiltonian (3). It has the form

H = z1z2+ z1z3+ z2z3− y2
1 + 2y1y2− y2

2 + 2y1y3+ 2y2y3− y2
3. (25)

We make the following change of variables:

w1 = y1+ y2 w2 = y1− y2 w3 = y3 (26)

and we leavezi unchanged. In terms of the new variables the system (24) has the form

ẇ1 = 1
2z1(w1+ w2)+ 1

2z2(w1− w2)

ẇ2 = 1
2z1(w1+ w2)− 1

2z2(w1− w2)

ẇ3 = z3w3

ż1 = (w3− w1)(w2+ w3)

ż2 = (w3− w2)(w3− w1)

ż3 = (w3+ w2)(w2− w3)

(27)

and the first integral (25) is transformed to the following form:

H = z1z2+ z1z3+ z2z3− w2
2 + 2w1w3− w2

3. (28)

Now, we introduce new variables

u1 = z1

w3
u2 = z2

w3
u3 = z3

w3
u4 = w2

w3
u5 = w1

w3
u6 = w3.

(29)
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After this transformation we obtain the following system:

u̇1 = u6[(1+ u4)(1− u5)− u1u3]

u̇2 = u6[(1− u4)(1− u5)− u2u3]

u̇3 = u6(u
2
4− u2

3− 1)

u̇4 = 1
2u6[u4(u1+ u2− 2u3)+ u5(u1− u2)]

u̇5 = 1
2u6[u4(u1− u2)+ u5(u1+ u2− 2u3)u5]

u̇6 = u3u
2
6

(30)

with the first integral

H = u2
6(u1u2+ u1u3+ u2u3− u2

4+ 2u5− 1). (31)

Now, we make use of the fact that the B(IX) model is considered only on the levelH = 0.
From equationH = 0, we findu5 as a function of(u1, u2, u3, u4):

u5 = 1
2(1+ u2

4− u1u2− u1u3− u2u3).

Thus we can eliminate this variable from the right-hand sides of (30). Moreover, if we
change the independent variable according to the rule

d

dτ
= u6

2

d

ds̄

(note thatu6 > 0) then the first four equations in (30) are separated from the last two. Thus,
we finally obtain the following close system describing the dynamic of the B(IX) model:

u̇1 = (1+ u4)[1+ u1u2+ u3(u1+ u2)− u2
4] − 2u1u3

u̇2 = (1− u4)[1+ u1u2+ u3(u1+ u2)− u2
4] − 2u2u3

u̇3 = 2(u2
4− u2

3− 1)

u̇4 = u4(u1+ u2− 2u3)+ 1
2(u1− u2)[1− u1u2− u3(u1+ u2)+ u2

4].

(32)

This system will be called the reduced B(IX) system. We consider this system inC4.

Theorem 2.The reduced B(IX) system does not have a non-trivial analytic first integral.

Our theorem will be a consequence of the following lemma.

Lemma 1.Consider a system of differential equations

ẋ = f (x), f (x) = (f1(x), . . . , fn(x)) x ∈ Cn (33)

with analytic right-hand sides, with

f (x) = Ax +O(|x|2) (34)

where the matrixA has eigenvaluesλi ∈ C, i = 1, . . . , n. If the system possesses an
analytical first integralF then there exist non-negative integersi1, . . . , in such that

n∑
k=1

ikλk = 0
n∑
k=1

ik > 0. (35)
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Let us assume that an analytic first integral exists and that condition (35) is not satisfied.
We represent the first integral in the following form:

F =
∞∑
l=k

Fl Fk 6= 0 k > 1

whereFl is of a homogenous form of degreel:

Fl =
∑

i1+···+in=l
F
(l)
i1,...,in

x
i1
1 · · · xinn ik ∈ Z+ k = 1, . . . , n. (36)

From the equation

n∑
j=1

fj (x)∂jF = 0

we conclude that the formFk is a first integral of the systeṁx = Ax, i.e.

n∑
j=1

lj (x)∂jFk = 0 li(x) =
n∑
j=1

Aijxj . (37)

If the matrix A is diagonalizable then we can assume thatli(x) = λixi , and then
equation (37) reads

∑
i1+···+in=k

F
(k)
i1,...,in

[
n∑
l=1

ilλl

]
x
i1
1 · · · xinn = 0. (38)

This equation implies that

F
(k)
i1,...,in

[
n∑
l=1

ilλl

]
= 0 for all (i1, . . . , in) ∈ Zn+

n∑
l=1

il = k.

BecauseFk 6= 0, there exist indices(i1, . . . , in) such thatF (k)i1,...,in
6= 0 and that for such

indices we have

n∑
l=1

ilλl = 0.

Contradiction of our assumption proves the lemma for the case of a diagonalizable matrix
A. In the case of a non-diagonalizable matrix the proof is only technically more difficult
(see [23] and especially [24] where this approach was introduced in the generalized form).

Let us remark that the above lemma is also true if we assume the first integral is a
formal power series.

To prove our theorem let us note that for the reduced B(IX) model pointz =
(−i,−i, i,0) is an equilibrium point and the matrix of the linearized system is diagonalizable
and possesses the eigenvalues(−2i,−2i,−4i,−4i). For these eigenvalues condition (35)
cannot be satisfied and this implies that the system does not have an analytic first integral.
In fact, we prove more, namely, the the system does not have a first integral that can be
expanded around the pointz as a formal power series.



2042 A J Maciejewski and M Szyd lowski

6. Conclusions

The particular integrable subclasses of the Bianchi models play an important role in the
analysis of the dynamics of cosmological models. To illustrate this fact, let us consider the
phase space of the solutions of Bianchi models in the Bogoyavlensky approach [1]. In the
Bogoyavlensky method for investigating the corresponding dynamical systems, we glue the
boundary1 onto which the system prolongs almost everywhere to the phase space. The
systems on the boundary1 can be integrated and, in this way, we can study the basic
properties of the trajectories near the singularity. From the existence of the monotonic
functionF , we obtain the result that in the generic situation (∀ i ni 6= 0) the trajectories of
the Bianchi class A models close up to the boundary0 asF � −1. Now, the trajectories
move along the corresponding ones lying on the boundary. All the trajectories are the
separatrices of critical points. Finally the trajectories reach the neighbourhood of the critical
pointsK (corresponding to the Kasner asymptotics of the space–time metric) and they begin
to move along their separatrices. The corresponding space–time metric for the mixmaster
models is the BKL approximation [16].

In this way the chaotic (and thus non-integrable) systems in the Bogoyavlensky approach
can be well approximated by an integrable system. This feature of such a surprisingly good
approximation has so far not been completely understood. In Bianchi models with chaos,
we have the infinite series of Kasner epochs (it would be good if we had a precise and exact
proof of this fact) and these models do not exactly admit the Kasner asymptotics.

The fact that the BKL approximation represents a typical state of the metric in a very
early state of the evolution has a very simple interpretation. ForF = F1 � −1 let there
be some distribution of initial conditions (e.g., homogeneous). Approaching the initial
singularity this distribution forF = F2, whereF2 < F1, transforms to the corresponding
one concentrated in the neighbourhood of the critical points. These critical points have the
separatrices which move towards the physical region of the phase space. During the motion
along such a separatrix the space–time metric is described by the BKL approximation. From
the fact thatF →−∞ near the singularity, we can conclude the existence of a fundamental
property of the system, namely the property of concentration of the trajectories near the
boundary1 [25].

In this paper we also try to obtain some exact results concerning integrability of the
Bianchi models. It is important to note that in the B(IX) model the phase space is restricted
to only one energy levelH = 0. Because of this, statements concerning the non-integrability
of this model in the whole phase space are of limited value. What we propose consists
of reduction of the system by one degree of freedom. For this purpose we use the energy
integral and the symmetry of the system—in appropriate non-canonical coordinates the
B(IX) system is a homogeneous one of the second degree. The reduced B(IX) system is
polynomial and this allows us to prove its non-integrabilty. There are still open questions,
e.g., does the reduced B(IX) system possess a meromorphic first integral? Is it chaotic?
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